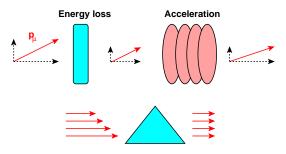
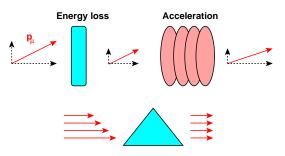
MuCool Test Area Progress and Plans

Yağmur Torun

Illinois Institute of Technology/Fermilab

All Experimenters' Mtg Aug 6, 2012 – Fermilab


• The only muon cooling scheme that appears practical within the muon lifetime (2.2 μ s)


• The only muon cooling scheme that appears practical within the muon lifetime $(2.2\mu s)$ – works "at the speed of the muon".

• The only muon cooling scheme that appears practical within the muon lifetime $(2.2\mu s)$ – works "at the speed of the muon".

- Cooling mainly transverse in a linear channel
- Longitudinal cooling requires momentum-dependent path-length through the energy absorbers

Normalized transverse emittance ε of muon beam in solenoidal channel

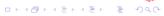
$$\frac{\mathit{d}\varepsilon}{\mathit{d}s} \simeq \frac{\left\langle \frac{\mathit{d}E}{\mathit{d}s} \right\rangle}{\beta^2 \mathit{E}} \; (\varepsilon - \varepsilon_0), \;\; \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{\mathit{d}E}{\mathit{d}s} \right\rangle X_0} \; \frac{\beta_\perp}{\beta}$$

 $\varepsilon_0\text{:}$ equilibrium emittance (multiple scattering \sim cooling)

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{\textit{d}\varepsilon}{\textit{d}s} \simeq \frac{\left\langle \frac{\textit{d}E}{\textit{d}s} \right\rangle}{\beta^2 \textit{E}} \; (\varepsilon - \varepsilon_0), \;\; \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{\textit{d}E}{\textit{d}s} \right\rangle \textit{X}_0} \; \frac{\beta_\perp}{\beta}$$

 ε_0 : equilibrium emittance (multiple scattering \sim cooling)


Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \simeq \frac{\left\langle \frac{dE}{ds} \right\rangle}{\beta^2 E} \ (\varepsilon - \varepsilon_0), \ \ \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{dE}{ds} \right\rangle X_0} \ \frac{\beta_\perp}{\beta}$$

 $\varepsilon_{\rm 0}$: equilibrium emittance (multiple scattering \sim cooling) Efficient cooling requires:

 Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \simeq \frac{\left\langle \frac{dE}{ds} \right\rangle}{\beta^2 E} \; (\varepsilon - \varepsilon_0), \;\; \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{dE}{ds} \right\rangle X_0} \; \frac{\beta_\perp}{\beta}$$

- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{\mathit{d}\varepsilon}{\mathit{d}s} \simeq \frac{\left\langle \frac{\mathit{d}E}{\mathit{d}s} \right\rangle}{\beta^2 \mathit{E}} \; (\varepsilon - \varepsilon_0), \;\; \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{\mathit{d}E}{\mathit{d}s} \right\rangle X_0} \; \frac{\beta_\perp}{\beta}$$

- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \simeq \frac{\left\langle \frac{dE}{ds} \right\rangle}{\beta^2 E} \ (\varepsilon - \varepsilon_0), \ \ \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{dE}{ds} \right\rangle X_0} \ \frac{\beta_\perp}{\beta}$$

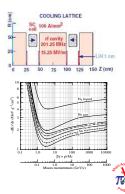
- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing performance degraded in B-field (critical R&D)



Normalized transverse emittance ε of muon beam in solenoidal channel

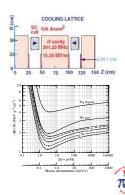
$$\frac{\textit{d}\varepsilon}{\textit{d}s} \simeq \frac{\left\langle \frac{\textit{d}E}{\textit{d}s} \right\rangle}{\beta^2 \textit{E}} \; (\varepsilon - \varepsilon_0), \;\; \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{\textit{d}E}{\textit{d}s} \right\rangle X_0} \; \frac{\beta_\perp}{\beta}$$

- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing performance degraded in B-field (critical R&D)
- tight packing to minimize decay losses



Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{\textit{d}\varepsilon}{\textit{d}s} \simeq \frac{\left\langle \frac{\textit{d}E}{\textit{d}s} \right\rangle}{\beta^2 \textit{E}} \; (\varepsilon - \varepsilon_0), \;\; \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{\textit{d}E}{\textit{d}s} \right\rangle X_0} \; \frac{\beta_\perp}{\beta}$$


- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing performance degraded in B-field (critical R&D)
- tight packing to minimize decay losses
- low muon momentum

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{\textit{d}\varepsilon}{\textit{d}s} \simeq \frac{\left\langle \frac{\textit{d}E}{\textit{d}s} \right\rangle}{\beta^2 \textit{E}} \; (\varepsilon - \varepsilon_0), \;\; \varepsilon_0 \simeq \frac{0.875 \text{MeV}}{\left\langle \frac{\textit{d}E}{\textit{d}s} \right\rangle X_0} \; \frac{\beta_\perp}{\beta}$$

- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing performance degraded in B-field (critical R&D)
- tight packing to minimize decay losses
- low muon momentum
- emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake)

MuCool

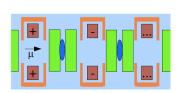
R&D program at Fermilab to develop ionization cooling components

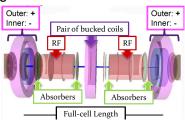
mission:

- design, prototype and test components for ionization cooling
 - absorbers (LH2, solid LiH)
 - RF cavities
 - magnets
 - diagnostics
- carry out associated simulation and theoretical studies
- support system tests (MICE, future cooling experiments)

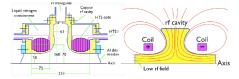
Current focus: RF in high external magnetic field

 Better materials: more robust against breakdown (melting point, energy loss, skin depth, thermal diffusion length, etc.)

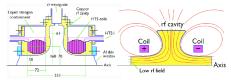



- Better materials: more robust against breakdown (melting point, energy loss, skin depth, thermal diffusion length, etc.)
- Surface processing: suppress field emission (superconducting RF techniques, coatings, atomic layer deposition)

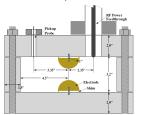
- Better materials: more robust against breakdown (melting point, energy loss, skin depth, thermal diffusion length, etc.)
- Surface processing: suppress field emission (superconducting RF techniques, coatings, atomic layer deposition)
- Shielding: iron, bucking coils

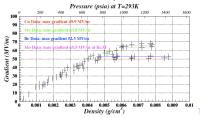


Magnetic insulation: modified cavity/coil designs to keep B⊥E on cavity surfaces (R. Palmer et al.)



Loss of x 2 gradient advantage in pillbox geometry \rightarrow dropped




Magnetic insulation: modified cavity/coil designs to keep B⊥E on cavity surfaces (R. Palmer et al.)

Loss of x 2 gradient advantage in pillbox geometry

- $\to \text{dropped}$
- High-pressure gas: suppress breakdown by moderating electrons (R. Johnson et al., Muons Inc.)

MuCool Test Area (MTA) – http://mice.iit.edu/mta/

Dedicated facility at the end of the Linac built to address

MuCool needs

- RF power (12 MW at 805 MHz, 5 MW at 201 MHz)
- 5 T superconducting solenoid
- 805 and 201 MHz cavities
- Radiation detectors
- Cryogenic plant
- 400 MeV p beamline
- Class-100 portable clean room
- Hydrogen safety infrastructure

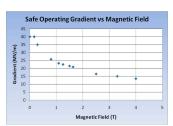
MTA Diagnostics

- RF forward, reflected, pickup signals
- Vacuum pressure
- Scintillator+PMT counters for X-ray rates, spectra
- Ionization chambers for radiation dose rates
- Spectrometer for cavity light analysis
- Thermocouples for cavity temperature
- Acoustic sensors for spark detection (under development)
- Toroids for beam intensity
- BPM, MW and scintillator for beam profile
- Environmental monitoring

Summary of MuCool experimental program

- trying to demonstrate a working solution to RF cavity operation in high external magnetic field for muon cooling
- major MAP milestone (and technical risk for MICE)
- big impact on cooling channel design and future system tests
- multipronged approach to cover maximum ground with available resources

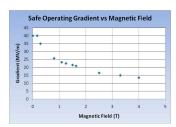
Cavity		Outstanding issues	Proposed resolution	Experimental tests
	pillbox	Breakdown and damage	Better materials	Mo, W, Be buttons
E			Botto: materials	Be-walled 805-MHz cavity
			Surface processing	Electropolished buttons
			Surface processing	201-MHz pillbox in B-field
3			Coatings	ALD-coated buttons
Vacuum			Coalings	ALD-coated cavity
>	rectangular			E⊥B box cavity
	rectarigular		Magnetic inculation	E B box cavity
	open-iris		Magnetic insulation	Modified cavity-coil geometry
		B-field/pressure effects	Materials tests	805-MHz 4-season cavity
P	Pressurized	Beam-induced ionization	Measure ionization lifetime	805-MHz cavity in beam
		Frequency dependence	Test at different frequency	Pressurized 201-MHz cavity



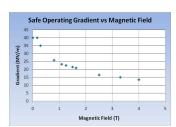
Students at the MTA (past 1.5 year)

- Lisa Nash (U. Chicago) HPRF
- Adam Sibley (Trinity) HPRF breakdown study
- Oleg Lysenko (U. Chicago) HPRF beam test
- Jared Gaynier (Kettering) circulator installation
- Jessica Cenni (Pisa) dielectric loaded cavity
- Tom Mclaughlin (Valparaiso) magnet mapping, circulator installation
- Ivan Orlov (Moscow State) HPRF beam test simulation
- Raul Campos (NC State) beamline magnet support
- Peter Lane (IIT) acoustic sensors for spark detection
- Timofey Zolkin (U. Chicago) dark current instrumentation
- Giulia Collura (Torino) HPRF beam test
- Ben Freemire (IIT) HPRF beam test (thesis), +lots more
- Last Feremenga (U. Chicago) magnetic field mapping
- Anastasia Belozertseva (U. Chicago) magnetic field mapping

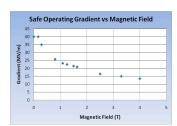
- Pillbox geometry with thin curved Be windows
- Button holder for removable electrode inserts
- Used to



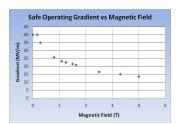
- Pillbox geometry with thin curved Be windows
- Button holder for removable electrode inserts
- Used to
 - quantify magnetic field dependence of gradient



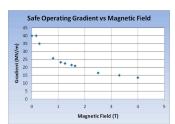
- Pillbox geometry with thin curved Be windows
- Button holder for removable electrode inserts
- Used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows



- Pillbox geometry with thin curved Be windows
- Button holder for removable electrode inserts
- Used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well



- Pillbox geometry with thin curved Be windows
- Button holder for removable electrode inserts
- Used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings



- Pillbox geometry with thin curved Be windows
- Button holder for removable electrode inserts
- Used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
 Cu still weak link Be, Mo and W look more promising



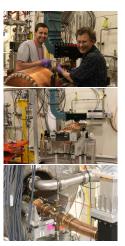
- Pillbox geometry with thin curved Be windows
- Button holder for removable electrode inserts
- Used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
 Cu still weak link Be, Mo and W look more promising
- Refurbished at JLab
- Ran with Be & Cu buttons (similar max gradient)

- Poor performance after refurbishing
- possibly from coupler area damage
- Tested Be and Cu buttons
- did somewhat better with Be than Cu
- conservative conditioning with Be due to safety concerns
- After flat-endplate runs
 - Additional damage to problem areas (iris, coupler)
 - Deposits on endplates
- After button runs
 - More damage on Cu buttons
 - Some features on Be buttons also
 - Deposits on endplates
- Replacement test cavity under design (SLAC)

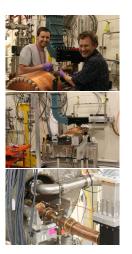
Run	Configuration	B[T]	Gradient [MV/m]
1	flat Cu plates	0	19
2		3	9.5
3	Be buttons	0	27
4		3	29
5		0	40
6		3	31
7		1.5	33
8		3	33
9	Cu buttons	0	30
10		3	28
11		0	35
12		3	28
13		1.5	30

805 MHz program

- Two new vacuum cavities were considered for future use
 - a replacement for the beat-up 805-MHz button cavity (SLAC)
 - a pillbox Be-wall cavity (LBNL)
- preferably with no coupler issues
- Arrived at modular design
 - replaceable end walls
 - coupling and diagnostics on center ring
- Dielectric loaded HPRF (Muons Inc.)

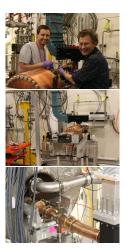


modular pillbox with replaceable end walls

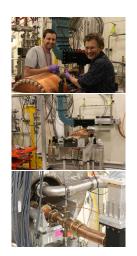


- modular pillbox with replaceable end walls
- designed for both vacuum and high-pressure

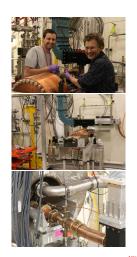
- modular pillbox with replaceable end walls
- designed for both vacuum and high-pressure
- operated in magnet

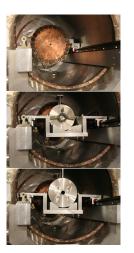

- modular pillbox with replaceable end walls
- designed for both vacuum and high-pressure
- operated in magnet
- 25 MV/m at B=0 and 3T

All-Season cavity (Muons Inc., LANL)

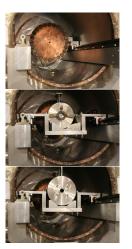

- modular pillbox with replaceable end walls
- designed for both vacuum and high-pressure
- operated in magnet
- 25 MV/m at B=0 and 3T
- will run again soon with RF pickup installed and auxiliary cooling

All-Season cavity (Muons Inc., LANL)

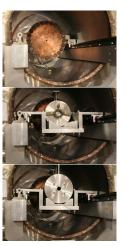

- modular pillbox with replaceable end walls
- designed for both vacuum and high-pressure
- operated in magnet
- 25 MV/m at B=0 and 3T
- will run again soon with RF pickup installed and auxiliary cooling
- gradient limited by cooling and seals (?)


All-Season cavity (Muons Inc., LANL)

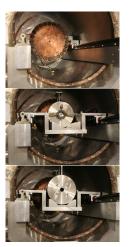
- modular pillbox with replaceable end walls
- designed for both vacuum and high-pressure
- operated in magnet
- 25 MV/m at B=0 and 3T
- will run again soon with RF pickup installed and auxiliary cooling
- gradient limited by cooling and seals (?)
- Kazakevich et al., PAC11



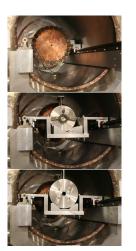
 HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)



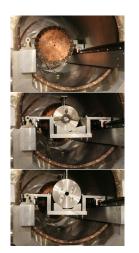
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- First beam experiment at MTA



- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- First beam experiment at MTA
- Ran Jul-Aug 2011



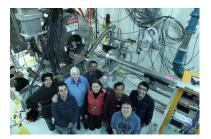
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- First beam experiment at MTA
- Ran Jul-Aug 2011
- Goal: evaluate cavity loading from beam-induced plasma (M. Chung et al., IPAC10)



- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- First beam experiment at MTA
- Ran Jul-Aug 2011
- Goal: evaluate cavity loading from beam-induced plasma (M. Chung et al., IPAC10)
 - Intense muon bunch creates lots of electron-ion pairs

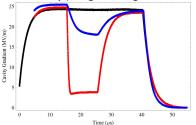
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- First beam experiment at MTA
- Ran Jul-Aug 2011
- Goal: evaluate cavity loading from beam-induced plasma (M. Chung et al., IPAC10)
 - Intense muon bunch creates lots of electron-ion pairs
 - potentially shorting the RF cavity

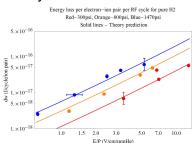
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- First beam experiment at MTA
- Ran Jul-Aug 2011
- Goal: evaluate cavity loading from beam-induced plasma (M. Chung et al., IPAC10)
 - Intense muon bunch creates lots of electron-ion pairs
 - potentially shorting the RF cavity
 - mitigated by electronegative dopant gas (K. Yonehara et al., PAC09, IPAC10; Freemire et al. IPAC12)



HPRF – 2nd beam test (Spring 2012) – Yonehara


- successfully concluded May 8
 - wealth of physics data starting Apr 18
 - 10^{10} – 3×10^{11} ppp
 - 300-1520 psi H2
 - SF6 and dry air dopant at many concentrations
 - also, He+air, N2+air, D2
 - 5-50 MV/m (with high-power hybrid coupler & loads)
 - some data with B=3T
 - Yonehara/Leonova/Jana/Freemire, IPAC12




Project X?

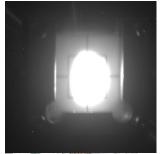
HPRF beam test

Analysis team hard at work (Freemire, Chung, Yonehara, Tollestrup) – good agreement with theory

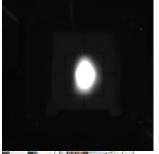
1470psi H2 (1% dry air)

PRELIMINARY

- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)


- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)

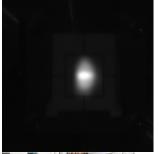
- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)

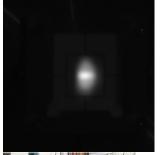

- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)


- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)

- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)

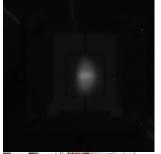
- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)


- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)


- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)

- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)

- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)

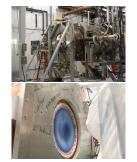

- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)


- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)

- First beam pulse to "emittance absorber" Feb 28, 2011
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Stronger dipole installed last year to fix vertical bend at the end
- Further upgrades this year
- New MW and window installed
- Permanent magnet built (J. Volk), to be installed upstream for better control
- New beam sheet out (C. Johnstone)

201 MHz MICE prototype cavity

• SRF-like processing (electropolished, etc.)


- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows

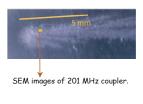
- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field

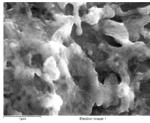
- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field reduced performance

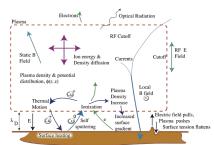
- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field reduced performance
- radiation output measured (MICE detector backgrounds)

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field reduced performance
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE

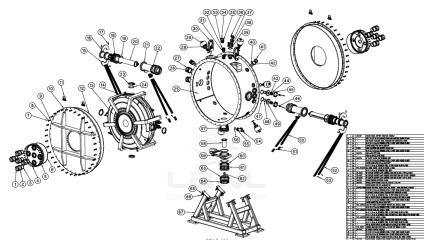
- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field reduced performance
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior

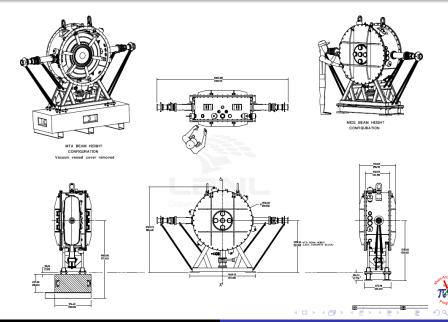





201 pillbox

Evidence for some sparking in the coupler


Unipolar arc? (J. Norem)



201-MHz Single-Cavity Module

201-MHz Single-Cavity Module

201-MHz Single-Cavity Module

201-MHz Single-Cavity Module Workshop

		Manage *
Material	drawings 😢 pictures 😢	
Tuesday 19	9 June 2012	
09:00 - 09:15	Introduction 16'	
00.00 - 00.10	Speaker: Alan Bross (Fermilab)	_
	Material: Slides 🔁	
09:15 - 09:35	Handling and transport at Fermilab 20'	
	Speaker: Ryan Schultz (Fermilab)	
09:35 - 09:45	Support modifications 10'	
	Speaker: Ryan Schultz (Fermilab)	
09:45 - 10:00	Cavity status 16'	
	Speaker: Tianhuan Luo (University of Mississippi) Material: Stides 60	
10:00 - 10:15	Tuners 18'	
	Speaker: Allan DeMello (Lawrence Berkeley National Laboratory)	
10:15 - 10:30	Tuner Control 15' Speaker: Pierrick Haniet (Illinois Institute of Technology/FNAL)	
	Material: Sildes 📆	
10:30 - 10:45	Break	
10:45 - 11:00	Couplers 15'	
10.40 - 11.00	Speaker: Allan DeMello (Lawrence Berkeley National Laboratory)	_
11:00 - 11:15	RF plumbing 15'	
	Speaker: Alfred Moretti (Fermilab)	
	Material: Stides 🖺	
11:15 - 11:30	Diagnostics 15'	
	Speaker: Yagmur Torun (Illinois Institute of Technology)	
11:30 - 12:15	Assembly procedure 45'	
	Speakers: Allan DeMello (Lawrence Berkeley National Laboratory) , Steve Virostek (Lawrence Berkeley 1 Lab)	lational
12:15 - 13:30	Lunch	
13:30 - 13:45	RF measurements 15'	
	Speaker: Derun Li (LBNL)	
13:45 - 14:00	Alignment and scanning 15'	
	Speaker: James Volk (Fermilab)	
14:00 - 14:10	Vacuum system 10' Speaker: Alfred Moretti (Fermilab)	
	Material: Sildes 📆	
4440 440		
14:10 - 14:20 14:20 - 14:35	Water hookup 10' Safety issues 15'	
14.20 - 14:35	Speaker: James Volk (Fermilab)	-
14:35 - 14:45	Schedule to:	
	Speaker: Yagmur Torun (Illinois Institute of Technology)	_
14:45 - 15:00	Future options 16'	

Speaker: Yagmur Torun (Illinois Institute of Technology)

15:00 - 15:15

201-MHz Single Cavity Module

- Components
 - 1st MICE cavity EP'ed at LBNL
 - 11 Be windows ready
 - 6 tuner forks fabricated
 - components for 6 actuators fab; need bellows and assembly
 - RF couplers to be built
- assembly area at Lab 6
- rough plan for handling and transport (R. Schultz, J. Volk)
- assembly fixture design in progress (A. DeMello)
- vertical assembly similar to (but much easier than) MICE RFCC
- schedule will be set by assembly fixture and coupler fabrication

Outlook

- Experimental program
 - HPRF cavity in beam 2nd test finished
 - HPRF breakdown study (no-beam) finished
 - All-season cavity (true pillbox) run next
 - 805-MHz pillbox cavity with grid windows (Summer)
 - 201-MHz single cavity module (Fall)
 - New 805 MHz modular pillbox with Be/Cu walls
 - ALD cavity under design
 - Dielectric-loaded cavity for helical cooling
 - beam tests (HPRF and vacuum) after shutdown
 - 201-MHz single-cavity module with CC
- Infrastructure
 - beamline upgrade, cryo plant maintenance
 - RF circulator/switch installation/commissioning
 - planning for coupling coil installation

Outlook

- Experimental program
 - HPRF cavity in beam 2nd test finished
 - HPRF breakdown study (no-beam) finished
 - All-season cavity (true pillbox) run next
 - 805-MHz pillbox cavity with grid windows (Summer)
 - 201-MHz single cavity module (Fall)
 - New 805 MHz modular pillbox with Be/Cu walls
 - ALD cavity under design
 - Dielectric-loaded cavity for helical cooling
 - beam tests (HPRF and vacuum) after shutdown
 - 201-MHz single-cavity module with CC
- Infrastructure
 - beamline upgrade, cryo plant maintenance
 - RF circulator/switch installation/commissioning
 - planning for coupling coil installation
 - Expect to demonstrate working solution(s) to RF cavity operation in high magnetic field within the next few years

Outlook

- Experimental program
 - HPRF cavity in beam 2nd test finished
 - HPRF breakdown study (no-beam) finished
 - All-season cavity (true pillbox) run next
 - 805-MHz pillbox cavity with grid windows (Summer)
 - 201-MHz single cavity module (Fall)
 - New 805 MHz modular pillbox with Be/Cu walls
 - ALD cavity under design
 - Dielectric-loaded cavity for helical cooling
 - beam tests (HPRF and vacuum) after shutdown
 - 201-MHz single-cavity module with CC
- Infrastructure
 - beamline upgrade, cryo plant maintenance
 - RF circulator/switch installation/commissioning
 - planning for coupling coil installation

 Expect to demonstrate working solution(s) to RF cavity operation in high magnetic field within the next few years

BACKUP

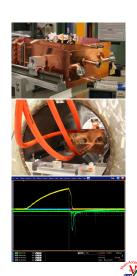
Useful reading

Serious degradation of RF cavity performance in strong external magnetic fields.

Currently main focus of MuCool.

- Magnetic field effect first seen at Fermilab's Lab-G with a 6-cell 805-MHz cavity
 - J. Norem *et al.*, Phys. Rev. ST Accel. Beams 6 (2003) 072001
- Studied in more detail at MTA with 805-MHz pillbox cavity A. Moretti et al., Phys. Rev. ST Accel. Beams 8 (2005) 072001
- Various models proposed
 A. Hassanein et al., Phys. Rev. ST Accel. Beams 9 (2006) 062001
 - R. B. Palmer *et al.*, Phys. Rev. ST Accel. Beams 12 (2009) 031002

Box Cavity


- Rectangular geometry chosen for test cavity to allow fast fabrication and simplify analysis
- Support system designed to rotate cavity pivoting around magnet center by up to 12°
- Rectangular coupling aperture with rounded edges and a coupling cell built to match the power coupler to waveguide
- Three CF flange tubes for rf pickups and optical diagnostics
- $f_0 = 805.3 \text{ MHz}, Q_0 = 27.9 \times 10^3, \text{ coupling factor } 0.97$
- YT et al., IPAC10

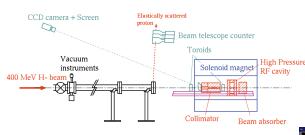
Box Cavity

- Operated in the MTA magnet Mar-Sep 2010
- Commissioned to 50 MV/m at B=0
- Took data at 0, \pm 1, 3, 4° wrt B axis (3T)
- Large effect seen at 3-4° (stable gradient down to about 25 MV/m)
- Some degradation even at ≤ 1° (33 MV/m)
- Visual inspection of interior, no obvious damage
- RF, optical and X-ray signals during sparks saved for analysis
- Magnetic insulation seems to work but not well enough to make up for lost shunt impedance
- Dropped from list

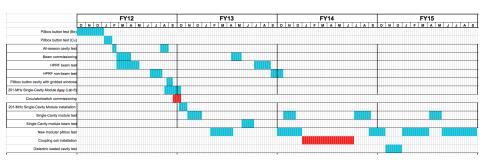
Magnetic Field Mapping

- Magnetic insulation depends strongly on angle
- MTA solenoid field never mapped in detail before
- Expect good alignment of magnetic axis with bore based on manufacturing tolerances but wanted to confirm

- Fiducial holes drilled during cavity fabrication
- Machined blocks to mount NIKHEF sensors
- Used cavity as mounting fixture data taken at corners
- Gaussmeter fixed in bore for normalization
- Bore mapped in detail with cart on rails



HPRF – 1st Beam Test (Summer 2011)



- 500 psi N2
- 500, 800 and 950 psi H2
- 8μ s beam, 2 intensities
- dopants (N2, SF6)

Possible Schedule

